
Question 1	2 pts Question 5	2 pts
What is the net ionic equation for the reaction between aqueous soluti CuSO ₄ ?	ons of Na ₃ PO ₄ and Pure water is saturated wit true?	h PbCl ₂ . In this saturated solution, which of the following is
\bigcirc 3Cu ²⁺ + 2PO ₄ ³⁻ \longrightarrow Cu ₃ (PO ₄) ₂	○ K _{sp} = [Pb ²⁺][Cl1]	
$\bigcirc 2Na^{+} + SO_{4}^{2-} \longrightarrow Na_{2}SO_{4}$	○ K _{sp} = [Pb ²⁺] ² [Cl ⁻]	
No reaction occurs since no precipitate is formed.	○ [Pb ²⁺] = 0.5[Cl ⁻]	
$\bigcirc Cu^{2+} + PO_4^{3-} \longrightarrow CuPO_4$	○ [Pb ²⁺] = [Cl ⁻]	
Question 2	2 pts Question 6	
What ions are present in solution after aqueous solutions of Cu(NO ₃) ₂ mixed? Assume we mixed stoichiometric equivalent amounts of both i	and K ₂ S are A hypothetical ionic substa	2 pts nce T_3U_2 ionizes to form T^{2+} and U^{3-} ions. The solubility of What is the value of the solubility-product constant?
What ions are present in solution after aqueous solutions of Cu(NO ₃) ₂ mixed? Assume we mixed stoichiometric equivalent amounts of both reaction.	and K ₂ S are A hypothetical ionic substa	nce T_3U_2 ionizes to form T^{2+} and U^{3-} ions. The solubility of
What ions are present in solution after aqueous solutions of Cu(NO ₃) ₂ mixed? Assume we mixed stoichiometric equivalent amounts of both reaction. Cu ²⁺ , S ²⁻	and K_2S are A hypothetical ionic substate eactants and 100% $ T_3U_2 \text{ is } 4.04 \times 10^{-20} \text{ mol/L. V} $	nce T_3U_2 ionizes to form T^{2+} and U^{3-} ions. The solubility of
What ions are present in solution after aqueous solutions of Cu(NO ₃) ₂ mixed? Assume we mixed stoichiometric equivalent amounts of both reaction. Cu ²⁺ , S ²⁻ No ions are present as both products form precipitates.	and K_2S are A hypothetical ionic substate T_3U_2 is 4.04×10^{-20} mol/L. Where 0.79×10^{-39}	nce T_3U_2 ionizes to form T^{2+} and U^{3-} ions. The solubility of
What ions are present in solution after aqueous solutions of Cu(NO ₃) ₂ mixed? Assume we mixed stoichiometric equivalent amounts of both reaction. Cu ²⁺ , S ²⁻ No ions are present as both products form precipitates. Cu ²⁺ , NO ₃ ⁻ , K ⁺ , S ²⁻	and K_2S are eactants and 100% A hypothetical ionic substated and 100%	
What ions are present in solution after aqueous solutions of Cu(NO ₃) ₂ mixed? Assume we mixed stoichiometric equivalent amounts of both reaction. Cu ²⁺ , S ²⁻ No ions are present as both products form precipitates.	and K_2S are eactants and 100% A hypothetical ionic substate T_3U_2 is 4.04×10^{-20} mol/L. Where 0.79×10^{-39} is 0.79×10^{-39} in 0.79×10^{-95} in 0.79×10^{-97}	nce T_3U_2 ionizes to form T^{2+} and U^{3-} ions. The solubility of
What ions are present in solution after aqueous solutions of Cu(NO ₃) ₂ mixed? Assume we mixed stoichiometric equivalent amounts of both reaction. Cu ²⁺ , S ²⁻ No ions are present as both products form precipitates. Cu ²⁺ , NO ₃ -, K ⁺ , S ²⁻	and K_2S are eactants and 100% A hypothetical ionic substate T_3U_2 is 4.04×10^{-20} mol/L. Where 0.79×10^{-39} is 0.79×10^{-39} in 0.79×10^{-95} in 0.79×10^{-97}	nce T_3U_2 ionizes to form T^{2+} and U^{3-} ions. The solubility of
What ions are present in solution after aqueous solutions of Cu(NO ₃) ₂ mixed? Assume we mixed stoichiometric equivalent amounts of both reaction. Cu ²⁺ , S ²⁻ No ions are present as both products form precipitates. Cu ²⁺ , NO ₃ , K ⁺ , S ²⁻	and K_2S are eactants and 100% A hypothetical ionic substate T_3U_2 is 4.04×10^{-20} mol/L. Where 0.79×10^{-39} is 0.79×10^{-39} in 0.79×10^{-95} in 0.79×10^{-97}	nce T_3U_2 ionizes to form T^{2+} and U^{3-} ions. The solubility of

Question 3	2 pts
Molar solubility is	
the number of moles that dissolve to give one liter of super-saturated solution.	
the total molarity of the solution.	
the number of moles that dissolve to give one liter of saturated solution.	
○ equal to the K _{sp} .	

The K_{sp} equation for sodium bicarbonate (NaHCO ₃) should be written as:	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
$\bigcirc K_{sp} = [Na^{\dagger}][H^{\dagger}][CO_3^2]$	
○ K _{sp} = [NaH ²⁺][CO ₃ ²⁻]	

Question 8	2 pts
Determine the molar solubility of some salt with the generic formula AB_2 if K_{sp} = 2.56×10^2 .	
○ 1 M	
○ 4 M	
○ 10 M	
○ 0.1 M	

Question 9		2 pts
Rank the followi	ing salts from least to most molar solubility:	
Bil	$K_{sp} = 7.7 \times 10^{-19}$	
Cd ₃ (AsO ₄) ₂	$K_{sp} = 2.2 \times 10^{-33}$	
AIPO ₄	$K_{sp} = 9.8 \times 10^{-21}$	
CaSO ₄	$K_{sp} = 4.9 \times 10^{-5}$	
O AIPO ₄ < Bil <	Cd ₃ (AsO ₄) ₂ < CaSO ₄	
O Cd ₃ (AsO ₄) ₂ <	AIPO ₄ < Bil < CaSO ₄	
O Cd ₃ (AsO ₄) ₂ <	Bil < AIPO ₄ < CaSO ₄	
○ CaSO ₄ < Bil <	< AIPO ₄ < Cd ₃ (AsO ₄) ₂	

Question 12	2 pts
$CaSO_4$ has a K_{sp} = $3x10^{-5}$. In which of the following would $CaSO_4$ be the most sol	uble?
○ 1.0 M CaCl₂(aq)	
CaSO ₄ would have the same solubility in all three of these solutions	
0.5 M K ₂ SO ₄ (aq)	
O pure water	

Question 10	3 pts
A hypothetical compound $\rm MX_3$ has a molar solubility of 0.00562 M. What is the $\rm K_{sp}$ for $\rm MX_3?$	e value of
○ 2.69 x 10 ⁻⁸	
○ 3.16 x 10 ⁻⁵	
○ 9.48 x 10 ⁻⁵	
○ 2.99 x 10 ⁻⁹	

Question 13	2 pts
A solution of AgI contains 1.9 M Ag $^+$. K_{sp} of AgI is 8.3 x 10 $^{-17}$. What is the maxim concentration that can exist in this solution?	um I ⁻
○ 1.6x10 ⁻¹⁶ M	
○ 4.4x10 ⁻¹⁷ M	
○ 1.9 M	
○ 8.3x10 ⁻¹⁷ M	

Question 11	2 pts
Determine if a precipitate will form when $0.96g~Na_2CO_3$ is combined with $0.2g~Bat$ 10L solution. (For BaCO ₃ , K _{sp} = $2.8x10^{-9}$).	3r ₂ in a
○ BaCO ₃ precipitates	
BaBr ₂ will remain in solid form as it is insoluble in water.	
○ BaCO₃ does not precipitate	
It is impossible to know if any BaCO ₃ will precipitate with the information given.	

Question 14	3 pts
What would be the molar solubility of Li_3PO_4 (K_{sp} = 2.37 x 10 ⁻⁴) in a 1M LiCl solution	on?
○ 5.44 x 10 ⁻²	
○ 2.37 x 10 ⁻⁴	
○ 1.54 x 10 ⁻²	
○ 1.24 x 10 ⁻¹	